Time and Temperature in Soapmaking

Kevin M. Dunn

Spring 2009

- What is the "gel phase?"
- Why and when does it appear?
- Is it good or bad for my soap?

Acknowledgements

- Mike Lawson/Columbus Foods
- Hampden-Sydney College
 - John Campbell (NMR)
 - Andrew Basinger (Temp Profiles)
 - Tyler Bowman (Temp Profiles)
 - Drake Huzek (Kinetics)
 - Billy Eskridge (Kinetics)
 - Matt Huff (IR)

Acknowledgements

- Proctor and Gamble (DSC and XRD)
 - Jody Aiken
 - Steve Sealschott
 - David Bohlen
 - Kassy Pelzel
 - Pauline Vu

Saponification

- Oil + 3 NaOH = Glycerol + 3 Soap
- How much NaOH is needed?

Sodium Saponification Value

• $Delight_{1000} = Olive_{390}Palm_{280}Coconut_{280}Castor_{50}$

- $Delight_{1000} = Olive_{390}Palm_{280}Coconut_{280}Castor_{50}$
- Lye = 50.00% NaOH, 50.00% distilled water
- SSV of Delight is 150.8 ppt NaOH

- $Delight_{1000} = Olive_{390}Palm_{280}Coconut_{280}Castor_{50}$
- Lye = 50.00% NaOH, 50.00% distilled water
- SSV of Delight is 150.8 ppt NaOH
- $Delight_{1000}Lye_{288}$

- $Delight_{1000} = Olive_{390}Palm_{280}Coconut_{280}Castor_{50}$
- Lye = 50.00% NaOH, 50.00% distilled water
- SSV of Delight is 150.8 ppt NaOH
- $Delight_{1000}Lye_{288}$
- 144/150.8 = 0.955, 4.5% lye discount

• What is the normal, correct, or standard lye concentration?

- What is the normal, correct, or standard lye concentration?
- Ann Bramson, Soap: Making it, Enjoying it (1972) 25-27%, 26% average

- What is the normal, correct, or standard lye concentration?
- Ann Bramson, Soap: Making it, Enjoying it (1972) 25-27%, 26% average
- Susan Cavitch, *The Soapmaker's Companion* (1997) 26-29%, 27% average

- What is the normal, correct, or standard lye concentration?
- Ann Bramson, Soap: Making it, Enjoying it (1972) 25-27%, 26% average
- Susan Cavitch, *The Soapmaker's Companion* (1997) 26-29%, 27% average
- Robert McDaniel, Essentially Soap (2000) 33-38%, 34% average

- What is the normal, correct, or standard lye concentration?
- Ann Bramson, Soap: Making it, Enjoying it (1972) 25-27%, 26% average
- Susan Cavitch, *The Soapmaker's Companion* (1997) 26-29%, 27% average
- Robert McDaniel, Essentially Soap (2000) 33-38%, 34% average
- Anne Watson, Smart Soapmaking (2007) 30-37%, 33% average

• Lye = 50.00% NaOH, 50.00% distilled water

- Lye = 50.00% NaOH, 50.00% distilled water
- Delight₁₀₀₀Lye₂₈₈Aq₀ (50.00% NaOH Lye)

Delight₁₀₀₀Lye₂₈₈Aq₇₂ (41.67% NaOH Lye)

Delight₁₀₀₀Lye₂₈₈Aq₁₄₄ (33.33% NaOH Lye)

Delight₁₀₀₀Lye₂₈₈Aq₂₁₆ (29.16% NaOH Lye)

 $Delight_{1000}Lye_{288}Aq_{288}$ (25.00% NaOH Lye)

- Lye = 50.00% NaOH, 50.00% distilled water
- Delight₁₀₀₀Lye₂₈₈Aq₀ (11.18% Water)

 $Delight_{1000}Lye_{288}Aq_{72}$ (15.88% Water)

Delight₁₀₀₀Lye₂₈₈Aq₁₄₄ (20.11% Water)

Delight₁₀₀₀Lye₂₈₈Aq₂₁₆ (23.93% Water)

 $Delight_{1000}Lye_{288}Aq_{288}$ (27.41% Water)

- Lye = 50.00% NaOH, 50.00% distilled water
- Delight₁₀₀₀Lye₂₈₈Aq₀ (Low-Water)

 $Delight_{1000}Lye_{288}Aq_{72}$

Delight₁₀₀₀Lye₂₈₈Aq₁₄₄ (Medium-Water)

 $\mathrm{Delight}_{1000}\mathrm{Lye}_{288}\mathrm{Aq}_{216}$

Delight₁₀₀₀Lye₂₈₈Aq₂₈₈ (High-Water)

Processing Soap

- 100 g oil + water + lye into 500 mL plastic bottle
- Shaken 15 sec on a paint shaker
- Gently swirled until trace
- Poured into a nest of styrofoam cups
- Temperature recorded every 15 min for 4 hours

• Ice, water, steam

- Ice, water, steam
- Ice, cream, ice cream

- Ice, water, steam
- Ice, cream, ice cream
- Gel, sol (Jello)

- Ice, water, steam
- Ice, cream, ice cream
- Gel, sol (Jello)
- Sugar, water, honey

- Ice, water, steam
- Ice, cream, ice cream
- Gel, sol (Jello)
- Sugar, water, honey
- Flour, water, gravy

- Ice, water, steam
- Ice, cream, ice cream
- Gel, sol (Jello)
- Sugar, water, honey
- Flour, water, gravy
- Soap is more complex than any of these.

Phase Diagram

Where We Work

Time / min

Delight

• Is there a difference between soaps that gelled and those that did not?

- Is there a difference between soaps that gelled and those that did not?
- Compare Aq_{288} soaps processed at different initial temperatures.

- Is there a difference between soaps that gelled and those that did not?
- Compare Aq_{288} soaps processed at different initial temperatures.
 - Soaps had the same consistency.
 - Soaps had the same alkalinity.
 - Soaps had the same hardness.

- Is there a difference between soaps that gelled and those that did not?
- Compare Aq_{288} soaps processed at different initial temperatures.
 - Soaps had the same consistency.
 - Soaps had the same alkalinity.
 - Soaps had the same hardness.
 - Soaps behaved differently when soaked in water.

Soap Soak Test

Soap cylinders soaked in water for 18 hrs.

Soap Soak Test: 0 hrs

Soap Soak Test: 18 hrs

Soap Soak Test

- Did soaps "survive" because they got hot?
- Did soaps "survive" because they gelled?

Soap Soak Test

- Did soaps "survive" because they got hot?
- Did soaps "survive" because they gelled?
- We can compare hot soaps with different moisture content.

Soap Soak Test: 18 hrs

The phase behavior of saponifying oil depends on:

• The size and shape of the mold. Large block molds retain more heat than individual cavity molds.

- The size and shape of the mold. Large block molds retain more heat than individual cavity molds.
- The initial temperature of the oil and lye. High initial temperatures increase the peak temperature.

- The size and shape of the mold. Large block molds retain more heat than individual cavity molds.
- The initial temperature of the oil and lye. High initial temperatures increase the peak temperature.
- The water portion of the soap formula. Low-water soaps gel only at high temperatures. High-water soaps gel at moderate temperatures.

- The size and shape of the mold. Large block molds retain more heat than individual cavity molds.
- The initial temperature of the oil and lye. High initial temperatures increase the peak temperature.
- The water portion of the soap formula. Low-water soaps gel only at high temperatures. High-water soaps gel at moderate temperatures.
- The oils used. Saturated fats saponify more quickly than unsaturated ois and may increase peak temperature.

- The size and shape of the mold. Large block molds retain more heat than individual cavity molds.
- The initial temperature of the oil and lye. High initial temperatures increase the peak temperature.
- The water portion of the soap formula. Low-water soaps gel only at high temperatures. High-water soaps gel at moderate temperatures.
- The oils used. Saturated fats saponify more quickly than unsaturated ois and may increase peak temperature.
- Fragrances and additives. Fragrances and additives may increase the speed of saponification and peak temperature.

Neat soap is a lamellar lyotropic liquid crystalline phase of soap and water.

• Liquid crystalline: the molecules are free to move past one another, as in a liquid; they are arranged in ordered patterns, as in a solid crystal.

- Liquid crystalline: the molecules are free to move past one another, as in a liquid; they are arranged in ordered patterns, as in a solid crystal.
- Lyotropic: the liquid crystal contains at least two kinds of molecule and its properties depend on the concentrations.

- Liquid crystalline: the molecules are free to move past one another, as in a liquid; they are arranged in ordered patterns, as in a solid crystal.
- Lyotropic: the liquid crystal contains at least two kinds of molecule and its properties depend on the concentrations.
- Lamellar: the two kinds of molecules are arranged in sheets.

- Liquid crystalline: the molecules are free to move past one another, as in a liquid; they are arranged in ordered patterns, as in a solid crystal.
- Lyotropic: the liquid crystal contains at least two kinds of molecule and its properties depend on the concentrations.
- Lamellar: the two kinds of molecules are arranged in sheets.
- So.. What are the two kinds of molecules and why do they behave this way?

Oil and Lye

One Soap

Two Soaps

Three Soaps and a Glycerin

Soap and Water

Nerds and Cheerleaders

Soap Micelle

Soap Micelle

Soap Micelle

Animation: (http://cavemanchemistry.com/graphics/Micelle.gif)

Neat Soap

Neat Soap

Neat Soap

Animation: (http://cavemanchemistry.com/graphics/Neat.gif)

Solid Soap

Animation: (http://cavemanchemistry.com/graphics/SolidSoap. gif)

• When soap dissolves in water, the molecules form micelles, with a fatty interior. Dirt, grease, and other fatty materials dissolve in the fatty interior of the micelles.

- When soap dissolves in water, the molecules form micelles, with a fatty interior. Dirt, grease, and other fatty materials dissolve in the fatty interior of the micelles.
- Neat soap is a lamellar lyotropic liquid crystalline phase of soap and water.

- When soap dissolves in water, the molecules form micelles, with a fatty interior. Dirt, grease, and other fatty materials dissolve in the fatty interior of the micelles.
- Neat soap is a lamellar lyotropic liquid crystalline phase of soap and water.
- The structure of solid soap is similar to that of neat soap, but the fatty tails of the soap molecules are "frozen" in a crystal lattice.

Recommendations

• If you want a non-gelling soap to gel, increase the water portion and/or the starting temperature.

Recommendations

- If you want a non-gelling soap to gel, increase the water portion and/or the starting temperature.
- If you want to prevent a gelling soap from doing so, decrease the water portion and/or the starting temperature.

Recommendations

- If you want a non-gelling soap to gel, increase the water portion and/or the starting temperature.
- If you want to prevent a gelling soap from doing so, decrease the water portion and/or the starting temperature.
- Gelled soap is neither better nor worse than non-gelled soap, but it is subtly different in its water-absorbing properties.

Questions

Questions?

Scientific Soapmaking

- The textbook for the course you *wish* you had taken in high school.
- To be completed this summer.
- Available now in draft form: ScientificSoapmaking.com.

References

- "Structure of the Liquid Crystal Phases of the Soap-Water System: Middle Soap and Neat Soap," Luzzati, Mustacchi, and Skoulios, *Nature* Sept 21, 1957.
- "Solid Soap Phases," Ferguson, Rosevear, and Stillman, *Ind. Eng. Chem.*, 35(9), 1938.